Hall Ticket Number:

Code No. : 14426

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (E.C.E. : CBCS) IV-Semester Main Examinations, January-2021 Signal Analysis and Transform Techniques

Time: 2 hours

Max. Marks: 60

Note: Answer any NINE questions from Part-A and any THREE from Part-B Part-A ($9 \times 2 = 18$ Marks)

Q. No.	Stem of the question	Μ	L	CO	PO
1.	Define Energy and Power signals?	2	1	1	1
2.	Write the relation between Exponential and Trigonometric Fourier Series coefficients	2	2	1	1,2
3.	If the Fourier transform of $x(t)$ is $X(\omega)$, what is the Fourier transform of $x(at)$?	2	3	2	1,2
4.	State the condition for a system to be causal interms of impulse response?	2	2	2	1
5.	Write the applications of Laplace Transforms with respect to Communication Engineering.	2	2	2	1
6.	A Signal having a Spectrum ranging from near dc to 10KHz is to be sampled and converted to discrete form. What is the minimum number of samples per second that must be taken to ensure recovery?	2	3	4	1,2
7.	The impulse response for Discrete LTI System is given by	2	3	3	1,2
	$h(n) = \delta(n) + \cos n\pi$, Check for Stability.				
8.	Write the properties of Linear convolution.	2	1	3	1
9.	Determine the Z Transform of the signal $x(n) = \delta(n-2) + \delta(n+3)$.	2	2	5	1
10.	Bring out the relationship between S-plane and Z-plane	2	3	5	1,2
11.	Determine the Fundamental time period of a signal $x(t) = 2\cos(4\pi t) + 3\sin(6\pi t)$.	2	3	1	1,2
12.	Write the conditions for the distortionless transmission through a LTI system?	2	3	3	1
	Part-B $(3 \times 14 = 42 \text{ Marks})$				
13. a)	Construct signal $x(t)$ using suitable elementary signals, express $x(t)$ in terms of the same and explain? x(t)	7	2	1	1,2
	3				
b)	Explain Time Shifting, Time Scaling, and Time Reversal operations on a continuous time signal x(t) with suitable examples?	7	2	1	1,

Code No. : 14426

4.	a)	Obtain the Fourier transform of the Signal	7	3	2	1,2
		x(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2)				
	b)	Explain how input and output signals are related to impulse response of a LTI system. Also write the properties of LTI system?	7	2	3	1,2
15.	a)	A Signal x(t) has Laplace transform	8	3	2	1,2
		$X(S) = \frac{S+2}{S^2 + 4S + 5}$				
		Find Laplace transform of the following signals:				
		i) $y(t) = tx(t)$ ii) $z(t) = e^{-t}x(t)$				
	b)	Distinguish between Instantaneous sampling, Natural sampling and Flat top sampling?	6	2	4	1,2
16.	a)	Define Discrete time Event Signals and derive the equations to find the Even and Odd parts of a Discrete time signal $x(n)$.	6	2	1	1,2
	b)	Find the DTFT of the following sequences	8	3	5	1,2
	1	i) $x(n) = n \ 0.5^n u(n)$ ii) $y(n) = \left(\frac{1}{4}\right)^n u(n-1)$.				
17.	a)	Determine the Z-transform and ROC of the Discrete time signal	8	3	5	1,2
		$x(n) = 2 \left(\frac{5}{6}\right)^n u(-n-1) + 3 \left(\frac{1}{2}\right)^n u(n)$.				
	b)	Explain the procedure to determine the Inverse Z Transform of $X(Z)$ using Long Division Method with suitable example?	6	2	5	1,2
18.	a)	Check whether the given systems are Linear, Time Invariant and Causal.	8	3	1	1,2
	·	i) $y(t) = e^{x(t)} + x(t+1)$ ii) $y(t) = \log_{10} x(t)$				
	b)	Obtain the impulse response of the system described by the following	6	3	3	1,2
		equation $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 2x(t) + \frac{dx(t)}{dt}$				
19.		Answer any two of the following:				
	a)	State Sampling theorem and discuss Aliasing with an example.	7	2	4	1,2
	b)	Bring out the relationship between DFS and DTFT	7	2	5	1,
	c)	Prove the following with respect to Z-transform.	7	2	5	1,
		 i) Time Shift Property ii) ROC of an finite non causal sequence is entire Z-Plane except Z=∞ 				

:: 2 ::

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	56 %
2	Knowledge on application and analysis (Level-3 & 4)	44 %
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	0 %
